A Stochastic Thermo-Mechanical Waves with Two-Temperature Theory for Electro-Magneto Semiconductor Medium

Author:

Alenazi Abdulaziz,Ahmed AbdelaalaORCID,El-Bary Alaa A.ORCID,Tantawi Ramdan S.,Lotfy KhaledORCID

Abstract

This paper investigates an uncommon technique by using the influence of the random function (Weiner process function), on a two-temperature problem, at the free surface of the semiconducting medium, by using the photo-thermoelasticity theory. Using the Silicon material as an example of a semiconducting medium under the influence of a magnetic field, the novel model can be formulated. To make the problem more logical, the randomness of the Weiner process function is aged to the governing stochastic equation. A combining stochastic process with the boundary of the variables is studied. In this case, the stochastic and deterministic solutions were obtained for all physical quantities. The additional noise is regarded as white noise. The problem is investigated according to a two-dimensional (2D) deformation. The normal mode method can be used mathematically to obtain numerically the deterministic, stochastic, and variance solutions of all physical quantities. Three sample paths are obtained by making a comparison between the stochastic and deterministic distributions of the field variables. The impacts of adding randomization to the boundary conditions are highlighted. The numerical results are shown graphically and discussed in consideration of the two-temperature parameter effect.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference45 articles.

1. Thermoclasticity and irreversible thermodynamics;Biot;J. Appl. Phys.,1956

2. A generalized dynamical theory of thermoelasticity;Lord;J. Mech. Phys. Solids,1967

3. Thermoelasticity;Green;J. Elast.,1972

4. Thermoelasticity with second sound: A review;Chandrasekharaiah;Appl. Mech. Rev.,1986

5. Hyperbolic thermoelasicity: A review of recent literature;Chandrasekharaiah;Appl. Mech. Rev.,1998

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3