Room and Elevated Temperature Sliding Friction and Wear Behavior of Al0.3CoFeCrNi and Al0.3CuFeCrNi2 High Entropy Alloys

Author:

Kadhim Dheyaa F.12ORCID,Koricherla Manindra V.2,Scharf Thomas W.2

Affiliation:

1. Department of Mechanical Engineering, University of Thi-Qar, Nasiriyah 64001, Iraq

2. Department of Materials Science and Engineering, The University of North Texas, Denton, TX 76207, USA

Abstract

In this study, processing–structure–property relations were systematically investigated at room and elevated temperatures for two FCC Al0.3CoFeCrNi and Al0.3CuFeCrNi2 high-entropy alloys (HEAs), also known as complex concentrated alloys (CCAs), prepared by conventional arc-melting. It was determined that both alloys exhibit FCC single-phase solid solution structure. Micro-indentation and sliding wear tests were performed to study the hardness and tribological behavior and mechanisms at room and elevated temperatures. During room-temperature sliding, both alloys exhibit similar friction behavior, with an average steady-state coefficient of friction (COF) of ~0.8. Upon increasing sliding temperatures to 300 °C, the average COF decreased to a lowest value of ~0.3 for Al0.3CuFeCrNi2. Mechanistic wear studies showed this was due to the low interfacial shear strength tribofilms formed inside the wear tracks. Raman spectroscopy and energy dispersive spectroscopy determined the tribofilms were predominantly composed of binary oxides and multi-element solid solution oxides. While the tribofilms at elevated temperatures lowered the COF values, the respective wear rates in both alloys were higher compared to room-temperature sliding, due to thermal softening during 300 °C sliding. Thus, these single FCC-phase HEAs provide no further benefit in wear resistance at elevated temperatures, and likely will have similar implications for other single FCC-phase HEAs.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3