Energetics of Interfaces and Strain Partition in GaN/AlN Pseudomorphic Superlattices

Author:

Karakostas Theodoros1ORCID,Komninou Philomela1ORCID,Pontikis Vassilis2ORCID

Affiliation:

1. School of Physics, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece

2. DRF/IRAMIS, Commissariat a l’Energie Atomique, Centre d’Etudes de Saclay, Université Paris-Saclay, 91191 Gif-Sur-Yvette CEDEX, France

Abstract

We present the results of a twofold experimental and computational study of (0001) GaN/AlN multilayers forming pseudomorphic superlattices. High-Resolution Transmission Electron Microscopy (HRTEM) shows that heterostructures with four c-lattice parameters thick GaN Quantum Wells (QW) are misfit-dislocation free. Accurate structural data are extracted from HRTEM images via a new methodology optimizing the residual elastic energy stored in the samples. Total energy calculations are performed with several models analogous to the experimental QWs with increasing thicknesses of GaN, whereas this of the AlN barrier is kept fixed at n = 8 c-lattice parameters. With vanishing external stresses, minimum energy configurations of the studied systems correspond to different strain states. Linear elasticity accurately yields the corresponding lattice parameters, suppressing the need for on-purpose total energy calculations. Theoretically justified parabolic fits of the excess interfacial energy yield the values of interfacial stress and elastic stiffness as functions of the GaN QW thickness. Total species-projected densities of states and gap values extracted from there allow deciphering the effect of the evolving strain on the electronic structure of the superlattice. It is found that the gap energy decreases linearly with increasing the strain of the QW. These results are briefly discussed in the light shed by previous works from the literature.

Funder

project INNOVATION-EL

Operational Programme Competitiveness, Entrepreneurship, and Innovation

Greece and the EU

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference59 articles.

1. Kehagias, T., Komninou, P., and Dimitrakopulos, G. (2014). Intergranular and Intephase Boundaries in Materials, Springer Science & Business Media.

2. Interface science in JMS;J. Mater. Sci.,2020

3. Ayers, J.E. (2007). Heteroepitaxy of Semiconductors: Theory, Growth, and Characterization, Taylor & Francis Group. [1st ed.].

4. Rüdiger, Q. (2008). Gallium Nitride Electronics, Springer. [2008th ed.].

5. Kasap, S., and Capper, P. (2017). Handbook of Electronic and Photonic Materials, Springer International Publishing AG.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3