Oxidized Graphitic-C3N4 with an Extended π-System for Enhanced Photoelectrochemical Property and Behavior

Author:

Chang Yue123ORCID,Dai Zhongkui1,Suo Kaili1,Wang Yuhang1ORCID,Ren Xiaona4ORCID

Affiliation:

1. Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China

2. National Materials Corrosion and Protection Data Center, University of Science and Technology Beijing, Beijing 100083, China

3. BRI Southeast Asia Network for Corrosion and Protection (MOE), Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China

4. Institute of Powder Metallurgy and Advanced Ceramics, School of Materials and Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

In this work, an oxidized g-C3N4 film was successfully synthesized using a two-step acid treatment and electrophoretic deposition method. The delocalized π-system of the oxidized g-C3N4 film was extended via an annealing treatment. We investigated the influence of hydrogen bonding reversibility and the oxidation treatment of g-C3N4 on the photoelectrochemical property and photocathodic protection for 304 stainless steel (304 SS). The resulting oxidized g-C3N4 photoelectrode with an extended π-system presents a remarkably enhanced photogenerated electron transfer capability from the photoelectrode to 304 SS (photoinduced OCP negative shift of −0.55 VAgCl) compared with oxidized g-C3N4 and protonated g-C3N4. The oxidation of g-C3N4 facilitates the formation of a porous structure and the introduction of abundant oxygen functional groups, which could promote the effective separation and transport of photogenerated electron–hole pairs. The hydrogen bonding reversibility contributes to the extension of the delocalized π-conjugation system, which could enhance light absorption efficiency. Meanwhile, the annealing treatment is beneficial for prolonging the lifetime of photoelectrons, which could reduce the recombination rate of charge carriers. In addition, to understand how the oxidation treatment and annealing treatment affect the charge transfer behavior, the electronic band structure was investigated, and we found that the oxidized g-C3N4 film with an extended π-system possesses a more negative conduction band position, which could reduce the energy barrier of the photogenerated electron transfer.

Funder

Guangdong Basic and Applied Basic Research Foundation

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3