Simulation Investigation on Thermal Characteristics of Thermal Battery Activation Process Based on COMSOL

Author:

Zhu Yanli1,Li Kai1,Kang Erwei2,Quan Ting1,Sun Ting2,Luo Jing2,Zhao Shengnan2

Affiliation:

1. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China

2. Xi’an North Qinghua Electromechanical Co., Ltd., Xi’an 710025, China

Abstract

Current thermal simulation methods are not suitable for small-size fast-activation thermal batteries, so this paper provides an improved simulation method to calculate thermal cell temperature changes using the COMSOL platform. A two-dimensional axisymmetric model of thermal batteries has been established, considering the actual heat release situation and the mobile heat source of thermal batteries. Based on it, the temperature change and electrolyte melting of thermal batteries under high-temperature conditions (50 °C) have been simulated, in which the temperature change law, thermal characteristics, and electrolyte melting characteristics have been analyzed in depth. The results show that the additional heating flakes and insulation design above and below the stack can effectively reduce heat loss. Most of the melting heat of the electrolyte flows in from the negative side. In addition, the thermal battery activation time has been calculated to be 91.2 ms at the moment when all the thermal battery electrolyte sheets begin to melt, and the absolute error was within 10% compared with the experimental results, indicating that the simulation model has high accuracy and can effectively broaden the simulation area of thermal batteries.

Funder

National Natural Science Foundation of China

Fund for Equipment Advance Research

State Key Laboratory of Explosion Science and Technology

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3