Colorimetric Plasmonic Hydrogen Gas Sensor Based on One-Dimensional Nano-Gratings

Author:

Zarei Majid1,Hamidi Seyedeh M.1,Chee K. -W. -A.2345

Affiliation:

1. Magneto-plasmonic Laboratory, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran

2. National Education Center for Semiconductor Technology, Kyungpook National University, Daegu 41566, Republic of Korea

3. Institute of Semiconductor Fusion Technology, Kyungpook National University, Daegu 41566, Republic of Korea

4. Department of Electronics and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

5. School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

Abstract

Plasmonic hydrogen gas sensors have become widely used in recent years due to their low cost, reliability, safety, and measurement accuracy. In this paper, we designed, optimized, and fabricated a palladium (Pd)-coated nano-grating-based plasmonic hydrogen gas sensor; and investigated using the finite-difference time-domain method and experimental spectral reflectance measurements, the calibrated effects of hydrogen gas exposure on the mechano-optical properties of the Pd sensing layer. The nanostructures were fabricated using DC sputter deposition onto a one-dimensional nano-grating optimized with a thin-film gold buffer to extend the optical response dynamic range and performance stability; the color change sensitivity of the Pd surface layer was demonstrated for hydrogen gas concentrations as low as 0.5 vol.%, up to 4 vol.%, based on the resonance wavelength shift within the visible band corresponding to the reversible phase transformation. Visual color change detection of even the smallest hydrogen concentrations indicated the high sensitivity of the gas sensor. Our technique has potential for application to high-accuracy portable plasmonic sensors compatible with biochemical sensing with smartphones.

Funder

Dongil Cultural Scholarship Foundation

Kyungpook National University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3