Double-Layer Kagome Metals Pt3Tl2 and Pt3In2

Author:

McGuire Michael A.1ORCID,Clements Eleanor M.1,Zhang Qiang2ORCID,Okamoto Satoshi1ORCID

Affiliation:

1. Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

2. Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Abstract

The connectivity and inherent frustration of the kagome lattice can produce interesting electronic structures and behaviors in compounds containing this structural motif. Here we report the properties of Pt3X2 (X = In and Tl) that adopt a double-layer kagome net structure related to that of the topologically nontrivial high-temperature ferromagnet Fe3Sn2 and the density wave hosting compound V3Sb2. We examined the structural and physical properties of single crystal Pt3Tl2 and polycrystalline Pt3In2 using X-ray and neutron diffraction, magnetic susceptibility, heat capacity, and electrical transport measurements, along with density functional theory calculations of the electronic structure. Our calculations show that Fermi levels lie in pseudogaps in the densities of states with several bands contributing to transport, and this is consistent with our Hall effect, magnetic susceptibility, and heat capacity measurements. Although electronic dispersions, characteristic of simple kagome nets with nearest-neighbor hopping, are not clearly seen, likely due to the extended nature of the Pt 5d states, we do observe moderately large and non-saturating magnetoresistance values and quantum oscillations in the magnetoresistance and magnetization associated with the kagome nets of Pt.

Funder

U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division

Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy

Office of Science of the U.S. Department of Energy

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3