Abstract
Functional wetting surfaces have excellent prospects in applications including self-cleaning, anti-fog, anti-icing, corrosion resistance, droplet control, and friction power generation. Laser micromachining technology is an advanced method for preparing such functional surfaces with high efficiency and quality. To fully exploit the potential of laser micromachining and the related hybrid methods, a wide spectrum of knowledge is needed. The present review systematically discusses the process capabilities and research developments of laser micromachining and its hybrid methods considering the research both in basic and practical fields. This paper outlines the relevant literature, summarizes the characteristics of functional wetting surfaces and also the basic scientific requirements for laser micromachining technology. Finally, the challenges and potential applications of superhydrophobic and superoleophobic surface are briefly discussed. This review fills the gap in the research literature by presenting an extended literature source with a wide coverage of recent developments.
Funder
Science and Technology Innovation Major Project of Wenzhou
Natural Science Foundation of Jiangsu Province
China Postdoc-toral Science Foundation
Natural Science Foundation of Zhejiang Province
Natural Science Research of Jiangsu Higher Education Institutions of China
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献