3D-Printed Bioceramic Scaffolds with High Strength and High Precision

Author:

Shao Huifeng123ORCID,Shi Jinyuan2,Huang Zhiqiang2,Yang Weibo3,Wang Honghua3

Affiliation:

1. State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China

2. School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

3. Zhejiang Guanlin Machinery Limited Company, Huzhou 313300, China

Abstract

Due to the increasing cases of bone damage and bone graft demand, bone-repair technology has great social and economic benefits and the manufacturing of artificial bone implants has become a focus in the domain of regenerative therapy. Considering that the traditional manufacturing process cannot effectively control the overall size of the scaffold, the diameter and shape of micropores, and the interoperability of micropores, 3D printing technology has emerged as a focal point of research within the realm of bone tissue engineering. However, the printing accuracy of extrusion-based biological 3D printing techniques is low. In this research, we utilized three-dimensional printing technology to develop high-precision magnesium-containing silicate (CSi-Mg) scaffolds. The precision of this innovative method was scrutinized and the influence of pore size on scaffold strength was systematically analyzed. Furthermore, the influence of the pore architecture on the sidewalls of these 3D-printed scaffolds was evaluated in terms of mechanical properties. The CSi-Mg scaffold, post a 3-week immersion in a simulated body of fluid, demonstrated a high modulus of elasticity (exceeding 404 MPa) and significant compressive strength (beyond 47 MPa). Furthermore, it exhibited commendable bioactivity and biodegradability. These results suggest that the high-precision 3D-printed CSi-Mg scaffolds hold great promise for addressing challenging bone defect cases.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Zhejiang Provincial Postdoctoral Research Funds

Postdoctoral Science Foundation of China

Fundamental Research Funds for the Provincial Universities of Zhejiang

Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3