Improved Mechanical Properties of SUS304/AA5083 Dissimilar Joint by Laser Ablation Pretreatment in Vortex- Friction Stir Lap Welding

Author:

Liu Xiaochao1ORCID,Luo Jingyue1,Bao Wenhui1,Pei Xianjun1,Wang Qinghua1ORCID,Ni Zhonghua1

Affiliation:

1. School of Mechanical Engineering, Southeast University, Nanjing 211189, China

Abstract

To obtain a high-quality Al/steel dissimilar joint, a micro-groove-assisted vortex-friction stir lap welding (MG-VFSLW) process was developed. Through prefabricating micro-grooves on the steel plate surface by laser ablation, high-quality mechanical interlock and metallurgical bonding were obtained simultaneously in the MG-VFSLW process. The weld formation, interface microstructure, mechanical properties, and failure mode in MG-VFSLW were studied by comparing them with those in VFSLW. The results showed that a line load of the AA5083/SUS304 dissimilar joint up to 485.9 N/mm was obtained by MG-VFSLW, which is 40.1% higher than that in VFSLW. Remarkable intermetallic compound layers and cracks were found in VFSLW. The cracks were closely related to the oxides on the interface. However, in MG-VFSLW, cross-riveting aluminum rivets and steel rivets were formed on the interface due to the micro-grooves and flashes made by the laser ablation. Good metallurgical bonding was also formed between AA5083 and SUS304. No remarkable intermetallic compound layers and cracks occurred. During the tensile shear tests, the aluminum rivets were cut off and some dimples and tear ridges existed on the fracture surface. In short, the high strength of the Al/steel lap joint in MG-VFSLW was attributed to the high-quality mechanical interlock and metallurgical bonding.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3