A Locally Disordered Metamaterial for Directing and Trapping Water Waves

Author:

Sun Wei-Qi1,Wang Yu-Han1,Xu Zhu-Long1,Fang Xiang2,Chuang Kuo-Chih1ORCID

Affiliation:

1. Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Institute of Applied Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China

2. Department of Mechanics and Engineering Science, Ningbo University, Ningbo 315211, China

Abstract

Manipulating the flow of water wave energy is crucial for ocean wave energy extraction or coastal protection, and the emergence of metamaterials paves a potential way for controlling water waves. In this work, by introducing a local disorder in a cavity-type metamaterial constructed by split-tube resonators, we show that water waves can be guided in an open channel with multiple energy flow paths formed merely by surrounded disconnected concurrent resonators that can serve as invisible walls without the requirement of a whole array system such as general periodic structures or waveguides. Specifically, we numerically and experimentally validate that a T-shaped metamaterial can achieve free guiding of water waves in a narrow band and a band-edge state along a distinct path. This open-space water waveguiding is found to be dominated by Fano-type interference and Fabry–Pérot resonance. Two distinct propagating modes, a low-frequency “trapping mode” and a high-frequency “following mode”, are identified. By simply rotating two configuration-dependent unit cells at the intersection of the metamaterial, we achieve a variety of water waveguiding paths tuning along rectilinear or bending (splitting or turning) directions, which rely on the two different propagating modes.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3