Hot Working of an Fe-25Al-1.5Ta Alloy Produced by Laser Powder Bed Fusion

Author:

Emdadi Aliakbar1ORCID,Bolz Sebastian2,Weiß Sabine1ORCID

Affiliation:

1. Department of Physical Metallurgy and Materials Technology, Brandenburg University of Technology Cottbus-Senftenberg, Konrad-Wachsmann-Allee 17, 03046 Cottbus, Germany

2. Department of Hybrid Manufacturing, Brandenburg University of Technology Cottbus-Senftenberg, Konrad-Wachsmann-Allee 17, 03046 Cottbus, Germany

Abstract

In the present work, hot working was used as a post-processing method for Fe-25Al-1.5Ta (at.%) alloy built using laser powder bed fusion (LPBF) to refine the undesirable columnar microstructure with heterogeneous grain sizes and strong textures in the build direction. The hot deformation behavior and workability were investigated using constitutive modeling and the concept of processing maps. Uniaxial compression tests were conducted up to a true strain of 0.8 at 900 °C, 1000 °C, and 1100 °C with strain rates of 0.0013 s−1, 0.01 s−1, and 0.1 s−1. The constitutive equations were derived to describe the flow stress–strain behavior in relation to the Zener–Hollomon parameter. Processing maps based on a dynamic materials model were plotted to evaluate the hot workability and to determine the optimal processing window as well as the active deformation mechanisms. The microstructure of the deformed specimens was characterized by scanning electron microscopy equipped with an electron backscatter diffraction detector. The results indicated a high degree of hot workability of the LPBF builds without flow instabilities over the entire deformation range tested. The epitaxially elongated grains of the as-built alloys were significantly refined after deformation through dynamic softening processes, and the porosity was reduced due to compressive deformation. The current study revealed a well-suited parameter range of 1000–1080 °C/0.004–0.012 s−1 for the safe and efficient deformation of the LPBF-fabricated Fe-25Al-1.5Ta alloys. The effectiveness of the process combination of LPBF with subsequent hot forming could be verified with regard to microstructure refinement and porosity reduction.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3