Structure–Property Correlation between Friction-Welded Work and Hardened Al-4.9Mg Alloy Joints

Author:

Mahajan Aditya M.1,Krishna K. Vamsi1ORCID,Quamar M. J.1,Rehman Ateekh Ur2ORCID,Bandi Bharath3,Babu N. Kishore1ORCID

Affiliation:

1. Department of Metallurgical and Materials Engineering, National Institute of Technology Warangal, Warangal 506004, India

2. Department of Industrial Engineering, College of Engineering, King Saud University, Riyadh 11451, Saudi Arabia

3. Warwick Manufacturing Group (WMG), University of Warwick, Coventry CV4 7AL, UK

Abstract

Friction welding of aluminum alloys holds immense potential for replacing riveted joints in the structural sections of the aeronautical and automotive sectors. This research aims to investigate the effects on the microstructural and mechanical properties when AA5083 H116 joints are subjected to rotary friction welding. To evaluate the quality of the welds, optical and scanning electron microanalysis techniques were utilized, revealing the formation of sound welds without porosity. The microstructural examination revealed distinct weld zones within the weldment, including the dynamically recrystallized zone (DRZ), thermo-mechanically affected zone (TMAZ), heat-affected zone (HAZ), and base metal (BM). During the friction-welding process, grain refinement occurred, leading to the development of fine equiaxed grains in the DRZ/weld zone. Tensile testing revealed that the weldment exhibited higher strength (YS: 301 ± 6 MPa; UTS: 425 ± 7 MPa) in the BM region compared to the base metal (YS: 207 ± 5 MPa; UTS: 385 ± 9 MPa). However, the weldment demonstrated slightly lower elongation (%El: 13 ± 2) compared to the base metal (%El: 15 ± 3). The decrease in ductility observed in the weldment can be attributed to the presence of distinct weld zones within the welded sample. Also, the tensile graph of the BM showed serrations throughout the curve, which is a characteristic phenomenon known as the Portevin–Le Chatelier effect (serrated yielding) in Al-Mg alloys. This effect occurs due to the influence of dynamic strain aging on the material’s macroscopic plastic deformation. Fractography analysis showcased a wide range of dimple sizes, indicating a ductile fracture mode in the weldment. These findings contribute to understanding the microstructural and mechanical behavior of AA5083 H116 joints subjected to rotary friction welding.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3