In Situ Formation of Al3Ti and Its Effects on the Microstructure, Hardness and Tribological Properties of Al Matrix Composites with Various Ti Contents

Author:

Lin Fei1ORCID,Ren Mengyuan1,Wu Hui1ORCID,Jia Fanghui1,Yang Ming2ORCID,Chen Zhixin1,Jiang Zhengyi1

Affiliation:

1. School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia

2. Graduate School of System Design, Tokyo Metropolitan University, Hino-shi, Tokyo 191-0065, Japan

Abstract

At present, Al matrix composites (AMCs) have drawn much attention owing to their light weight, high specific strength, high thermal conductivity, and superior excellent wear resistance, which endows them with great potential in the aerospace, automobile and military industries. In this study, AMCs with different Ti contents (0, 5 and 10 vol.%) were prepared by powder metallurgy. During the sintering, Al3Ti particles were in situ formed in the Al matrix. It was found that the Ti completely reacted with the Al matrix and formed fine in situ Al3Ti particles in Al-10Ti, while some large Ti-Al3Ti core-shell formed in Al-5Ti due to the incomplete reaction between the Ti and the Al matrix. Furthermore, the hardness of the composites was significantly improved by the in situ formed Al3Ti particles, reaching 143.3 HV in Al-5Ti and the highest value at 331.2 HV in Al-10Ti, respectively. The wear resistance of the composites is remarkably enhanced by Al3Ti particles compared to the unreinforced Al. Al-5Ti has the highest wear resistance among the samples. The wear resistance of the Al-10Ti composite becomes slightly deteriorated compared to Al-5Ti due to the brittle nature of Al3Ti, which leads to a three-body abrasive wear.

Funder

Australian Research Council

China Scholarship Council

University of Wollongong

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3