Hierarchical Structure of Glucosamine Hydrochloride Crystals in Antisolvent Crystallization

Author:

Du Shichao1,Yu Chuanping1,Zhang Ping1ORCID,Lu Jianxing2,Gong Junbo3,Xue Fumin1ORCID,Wang Yan1ORCID

Affiliation:

1. School of Pharmaceutical Sciences (Shandong Analysis and Test Center), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China

2. Shandong Runde Biotechnology Co., Ltd., Xintai 271200, China

3. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

Abstract

The crystal morphology of glucosamine hydrochloride (GAH) during antisolvent crystallization was investigated in this work. Particles of different shapes, such as plate-like crystals, leaflike clusters, fan-like dendrites, flower-like aggregates, and spherulites, were produced by tuning the type of antisolvents and crystallization operating conditions. The hierarchical structures of GAH crystals tended to be formed in a water + isopropanol mixture. The effects of operation parameters on the polycrystalline morphology were studied, including crystallization temperature, solute concentration, feeding rate of GAH aqueous solution, solvent-to-antisolvent mass ratio, and stirring rate. The evolution process of GAH spherulites was monitored using SEM, indicating a crystallographic branching mode. The crystal habit was predicted to identify the dominant faces. Molecular dynamics simulations were performed and the interaction energy of solute or solvent molecules on crystal surfaces was calculated. The experimental and simulation studies help to understand the branching mechanism and design a desired particle morphology.

Funder

National Natural Science Foundation of China

Shandong Keypoint Research & Development Plan

Central Guidance on Local Science and Technology Development Fund of Shandong Province

Jinan Introducing Innovation Team Project

Science, Education and Industry Integration Technology Innovation Project

Talent Research Project of Qilu University of Technology

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3