An Operando Study of the Thermal Reduction of BaTiO3 Crystals: The Nature of the Insulator–Metal Transition of the Surface Layer

Author:

Rodenbücher Christian1ORCID,Bihlmayer Gustav2ORCID,Korte Carsten1ORCID,Rytz Daniel3,Szade Jacek4,Szot Kristof45

Affiliation:

1. Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-14), 52425 Jülich, Germany

2. Forschungszentrum Jülich GmbH, Peter Grünberg Institute (PGI-1) and Institute for Advanced Simulation (IAS-1), 52425 Jülich, Germany

3. EOT GmbH, 55743 Idar-Oberstein, Germany

4. A. Chełkowski Institute of Physics, University of Silesia, 41-500 Chorzów, Poland

5. aixACCT Systems GmbH, 52068 Aachen, Germany

Abstract

The insulator-to-metal transition upon the thermal reduction of perovskites is a well-known yet not completely understood phenomenon. By combining different surface-sensitive analysis techniques, we analyze the electronic transport properties, electronic structure, and chemical composition during the annealing and cooling of high-quality BaTiO3 single crystals under ultra-high-vacuum conditions. Our results reveal that dislocations in the surface layer of the crystal play a decisive role as they serve as easy reduction sites. In this way, conducting filaments evolve and allow for turning a macroscopic crystal into a state of metallic conductivity upon reduction, although only an extremely small amount of oxygen is released. After annealing at high temperatures, a valence change of the Ti ions in the surface layer occurs, which becomes pronounced upon the quenching of the crystal. This shows that the reduction-induced insulator-to-metal transition is a highly dynamic non-equilibrium process in which resegregation effects in the surface layer take place. Upon cooling to the ferroelectric phase, the metallicity can be preserved, creating a “ferroelectric metal.” Through a nanoscale analysis of the local conductivity and piezoelectricity, we submit that this phenomenon is not a bulk effect but originates from the simultaneous existence of dislocation-based metallic filaments and piezoelectrically active areas, which are spatially separated.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3