The Influence of CaF2 Doping on the Sintering Behavior and Microwave Dielectric Properties of CaO-B2O3-SiO2 Glass-Ceramics for LTCC Applications

Author:

Dong Chao12,Wang Hua1,Yan Tingnan2,Zhao Jianwei2,Xu Jiwen1,Wang Dawei3ORCID

Affiliation:

1. School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China

2. Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

3. School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China

Abstract

With the rapid development of microelectronic information technology, microelectronic packaging has higher requirements in terms of integration density, signal transmission speed, and passive component integration. Low temperature co-fired ceramics (LTCC) exhibit excellent dielectric properties and low temperature sintering properties, which meets the above-mentioned requirements. This work investigates the effects of CaF2 doping (0–16 mol%) on the glass structure, sintering behavior, crystallization, microstructure, and microwave dielectric properties of the CaO-B2O3-SiO2 (CBS) glass-ceramic system. Glass-ceramics were prepared using the conventional melting and quenching method. The physical and chemical properties of the glass-ceramics were analyzed using various techniques including TMA, SDT, FTIR, XRD, SEM, and a network analyzer. The results indicate that CaF2 doping can effectively reduce the sintering temperature and softening temperature of CBS ceramics. It also substantially improves the densification, dielectric, and mechanical properties. The appropriate amount of CaF2-doped CBS glass-ceramics can be sintered below 800 °C with a low dielectric constant and loss at high frequency (εr < 6, tanδ < 0.02 @ 10~13 GHz). Specifically, 8 mol% CaF2 doped CBS glass-ceramics sintered at 790 °C exhibit excellent microwave dielectric and thermal properties, with εr ~ 5.92 @ 11.4 GHz, tanδ ~ 1.59 × 10−3, CTE ~ 7.76 × 10−6/°C, λ ~ 2.17 W/(m·k), which are attractive for LTCC applications.

Funder

Shenzhen Science and Technology Innovation Committee

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference30 articles.

1. Wei, A., Wang, G., and Liu, X. (2018). Low-Temperature Co-Fired Ceramic Materials and Applications, Springer.

2. Imanaka, Y. (2005). Multilayered Low Temperature Cofired Ceramics (LTCC) Technology, Springer Science + Business Media, Inc.

3. LTCC Substrates for Microwave Applications;Zhang;Micromachines,2021

4. Research on Preparation and Properties of High-Performance LTCC Materials;Li;Materials,2021

5. Development of LTCC Technology and Applications;Xu;Int. J. Appl. Ceram. Technol.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3