Aluminum Phosphide van der Waals Bilayers with Tunable Optoelectronic Properties under Biaxial Strain

Author:

Mao Caixia1,Ni Hao1ORCID,Qian Libing1,Hu Yonghong12,Huang Haiming3

Affiliation:

1. Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China

2. School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China

3. School of Science, Hubei University of Automotive Technology, Shiyan 442002, China

Abstract

The electronic and optical properties of three types of aluminum phosphide bilayers are examined using density functional theory. The results indicate that they all possess proper direct gaps, which exhibit a rich variety of behaviors depending on the strain. The band gaps of these aluminum phosphide bilayers could be easily tuned in the energy range from 0 eV to 1.9 eV under a wide range of biaxial strain. Additionally, band gap transitions between direct and indirect types are found when the external strain applied on them is changed from −12% to 12%. In addition, it was found that these AlP bilayers show strong light-harvesting ability for the ultraviolet light range of the solar spectrum (400–100 nm). The results obtained here indicate that these aluminum phosphide bilayers may have significant potential applications in future nanoelectric fields.

Funder

the Research Foundation of Educational Commission of Hubei Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3