Charge Transport in Organic Semiconducting Crystals Exhibiting TADF: Insight from Quantum Chemical Calculations

Author:

Sosorev Andrey Y.ORCID,Dominskiy Dmitry I.ORCID,Dubinets Nikita O.ORCID

Abstract

Luminophores featuring thermally activated delayed fluorescence (TADF) are the workhorses of the third- and fourth-generation OLEDs. While these compounds have usually been used as dopants embedded in the host, non-doped TADF OLEDs have recently shown significant progress as well and have attained performances comparable to those of the host-dopant systems. For efficient operation of non-doped OLEDs, the charge transport in neat films and single crystals of TADF luminophores is important; however, this issue was nearly unexplored theoretically. In the current study, we calculated the charge-carrier mobilities in four single crystals of TADF luminophores that have different molecular packing motifs. Specifically, in one of them both the donor and acceptor moieties form uniform π-stacks, while in the others the donors (acceptors) show alternating lateral shifts along the stacks; the difference in the molecular packing resulted in the difference in the transfer integrals between the molecules. The reorganization energies differed as well by up to four times for the studied crystals. As a result, the charge mobilities varied from 0.001 to ~0.3 cm2/(V∙s), with the largest being predicted for the crystal of the luminophore that consisted of a rigid donor and acceptor. We anticipate that the results obtained will be useful in the design of TADF luminophores for non-doped OLEDs, OLETs, and other organic light-emitting devices.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3