Structural Properties of He-Irradiated Zr/Nb Multilayer Investigated by Grazing Incidence X-ray Diffraction

Author:

Wang Tao1,Li Bingsheng2ORCID,Li Jun3,Wei Haiyuan3,Zhou Junjun3,Dong Pan1,Li Jie1,Krsjak Vladimir4ORCID

Affiliation:

1. Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China

2. State Key Laboratory for Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China

3. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

4. Institute of Nuclear and Physical Engineering, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava, Slovakia

Abstract

Zr/Nb nanoscale multilayers are regarded as one of the important candidate materials used in next-generation reactors. Understanding structural evolution induced by ion bombardment is crucial for the evaluation of lifetime performance. Magnetron sputter-deposited Zr/Nb multilayers with a periodicity of 7 nm were subjected to 300 keV He ion irradiation with three different fluences at room temperature. The depth-resolved strain and damage profiles in the Zr/Nb multilayers were investigated by grazing incidence X-ray diffraction. The tensile strain was found in the deposited Zr/Nb films. After He ion irradiation, the intensity of diffraction peaks increased. The change in diffraction peaks depends on He fluence and incident angle. Irradiation-induced pre-existing defect annealing was observed and the ability to recover the microstructure was more significant in the Zr films compared to the Nb films. Furthermore, the efficiency of defect annealing depends on the concentration of pre-existing defects and He fluence. When the He fluence exceeds the one for pre-existing defect annealing, residual defects will be formed, such as 1/3<12¯10> and 1/3<11¯00> dislocation loops in the Zr films and 1/2<111> dislocation loops in the Nb films. Finally, introducing deposited defects and interfaces can improve the radiation resistance of Zr/Nb nanoscale multilayers. These findings can be extended to other multilayers in order to develop candidate materials for fusion and fission systems with high radiation resistance.

Funder

Innovation Center of Nuclear Materials for National Defense Industry

National Natural Science Foundation of China

Qinghai Science Technology Program

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3