High-Temperature Tensile Properties of a Cobalt-Based Co-20Cr-15W-10Ni Superalloy with a Bimodal Grain Structure

Author:

Lei Yan1,Li Chenglin1,Wan Liang1

Affiliation:

1. School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China

Abstract

Cobalt-based superalloys are common materials for the manufacturing of various components used in aerospace applications. Conventional cobalt-based superalloys with a unimodal grain structure generally exhibit low strength and ductility at high temperatures. A bimodal grain structure of a cobalt-based superalloy, Co–20Cr–15W–10Ni (CCWN), was designed to achieve both high strength and ductility at high temperatures. The deformation behavior and tensile properties of a CCWN alloy with unimodal fine-grain (FG), coarse-grain (CG), and bimodal (FG/CG) structures were investigated at 900 °C. The microstructures and substructures after high-temperature deformation were examined via electron backscatter diffraction (EBSD) and electron channeling contrast imaging (ECCI) to determine the deformation mechanisms. The microstructural observation showed that the bimodal grain structure consisted of FG and CG domains. During high-temperature deformation at 900 °C, the FG structure was mainly deformed by dynamic recrystallization (DRX), maintaining a similar FG structure. The CG structure was mainly deformed by DRV, resulting in a small amount of DRX grains and a large amount of dynamic recovery (DRV) grains. However, the bimodal grain structures were mainly softened via DRX and transformed into a new bimodal structure, ultrafine grain (UFG) and FG. The FG domains tended to deform via dislocations, and the CG domains via twinning. The high-temperature tensile tests revealed that the bimodal-structured alloy exhibited both higher strength and ductility than those of the alloy samples with unimodal FG or CG structure. This is associated with the newly developed UFG/FG structures in the bimodal grain-structured samples during high-temperature deformation. This work may provide new insight into the development of high-temperature alloys with bimodal grain structures.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference34 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3