Magnetism and Transport Properties of EuCdBi2 with Bi Square Net

Author:

Liu Yi12,Li Jing2,Song Shi-Jie2,Yang Wu-Zhang3,Bao Jin-Ke4ORCID,Jiao Wen-He1ORCID,Xu Xiao-Feng1ORCID,Ren Zhi3,Cao Guang-Han25ORCID

Affiliation:

1. Key Laboratory of Quantum Precision Measurement of Zhejiang Province, Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China

2. School of Physics, Zhejiang University, Hangzhou 310030, China

3. School of Science, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310064, China

4. Materials Genome Institute and International Center for Quantum and Molecular Structures, Department of Physics, Shanghai University, Shanghai 200444, China

5. Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China

Abstract

We report a possible coexistence of nontrivial topology and antiferromagnetism in the newly discovered compounds EuCdBi2, with magnetic Eu layer locating above and below Bi square net. The X-ray diffraction on single crystals and powder indicats that this 112-type material crystalizes in space group of I4/mmm, the same as SrMnBi2 and EuMnBi2. Our combined measurements of magnetization, electrical transport and specific heat consistently reveal antiferromagnetic (AFM) transition of Eu2+ moments at TN = 20 K. The Eu moments are not saturated under a field of 7 T at 1.8 K. The anisotropic susceptibility suggests the Eu moments lie in the ab plane, and a metamagnetic (MM) transition is observed near 1 T below TN. Large positive magnetoresistance (MR) present for both H ‖ ab and H ‖ c, which are considered to contain part contributions from Dirac bands. Hall measurements show the electron-hole compensation effect is prominent above 100 K, with a crossover of Hall resistance from negative to positive values at ∼150 K. The fitted mobility of electrons is as high as 3250 cm2 V−1 S−1 at 1.8 K. Interestingly, the rapid increase of carrier density and suppression of mobility appear at around TN, indicating non-negligible interaction between Eu moments and electron/hole bands. EuCdBi2 may provide a new platform to investigate the interplay of topological bands and antiferromagnetic order.

Funder

Zhejiang Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Key Research and Development Program of Zhejiang Province, China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3