Modeling Analysis of Melting and Crystallization Process of Mold Flux Based on the Image Processing Technology

Author:

Chen Jian1ORCID,Liang Chengang1,Chen Jiawei1,Zhou Qiangqiang1

Affiliation:

1. School of Mechanical Engineering, Yangzhou University, Huayangxi Road 196, Yangzhou 225127, China

Abstract

The aim of this paper is to obtain the image information based on a given image of mold flux and to obtain the features that can describe the dynamical difference. The melting and crystallization dynamics of the slag were analyzed using the autoregressive moving average (ARIMA) time series model and data fitting method. Firstly, the binary image of the digital region of the original image was obtained by image information processing and segmentation methods, the original image number was determined by comparing the similarity of the information matrices of the given and standard images. The standard number with the highest similarity was considered as the number of the original image, and MATLAB was used to solve the problem, the digital information in all the images was successfully extracted. Secondly, ten eigenvalues were extracted from the given image after removing the background, and three principal components were obtained by principal component analysis. Then, a scoring model was constructed based on the percentage of variance, and the comprehensive scores of the three principal components to analyze the melting and crystallization process of the mold flux. Finally, based on the above work, the dynamic relationship between temperature, time and the melting and crystallization process of the mold flux was investigated. Since the temperature is approximately linearly correlated with time, the problem was transformed into finding the relationship between the melting and crystallization process of the mold flux and time. The least squares method, polynomial fitting and other methods were used to derive the relationship function, the relationship between the melting and crystallization process of mold flux and temperature and time was quantitatively analyzed.

Funder

Natural Science Foundation of Jiangsu Province

Postgraduate Education Reform Project of Yangzhou University

Undergraduate Education Reform Project of Yangzhou University

Lvyang Jinfeng Plan for Excellent Doctors of Yangzhou City

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3