Pure and Yb-Doped LaxYySc4-x-y(BO3)4 Crystals: A Review of Recent Advances

Author:

Broasca Alin12ORCID,Greculeasa Madalin12,Voicu Flavius1,Gheorghe Cristina1,Gheorghe Lucian1ORCID

Affiliation:

1. National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania

2. Doctoral School of Physics, Faculty of Physics, University of Bucharest, 077125 Magurele, Romania

Abstract

This paper reviews the progress in developing the LaxYySc4-x-y(BO3)4-LYSB and Yb-doped LaxYySc4-x-y(BO3)4-LYSB:Yb huntite-type crystals grown by the Czochralski method as new candidates for the next generation of nonlinear optical (NLO) and/or laser crystals. Considering the incongruent melting of these crystals, the initial compositions of the melt and the pulling and rotation rates were optimized. Additionally, a special thermal setup was engineered to grow LYSB-type crystals by the Czochralski crystal growth method. The chemical compositions of the LYSB and LYSB:Yb grown crystals were found to be La0.78Y0.32Sc2.90(BO3)4 and La0.78Y0.32Yb0.04Sc2.86(BO3)4, respectively. Therefore, for the LYSB:Yb crystal, the doping concentration of Yb3+ ions was considered to be 4 at.% with respect to the nonstoichiometric (La1-xYx)1.25Sc2.75(BO3)4 undoped compounds, i.e., LYSB:Yb (4 at.%). In terms of NLO properties, the obtained results demonstrate that LYSB and LYSB:Yb (4 at.%) crystals possess remarkable properties specific to huntite-type crystals. The main advantage of these crystals consists in the fact that they may be obtained with large dimensions and excellent optical quality by the Czochralski method, which recommends them as a new class of highly efficient crystals for different NLO applications, including second harmonic generation (SHG) of high-power or high-energy laser beams. The laser performances of the LYSB:Yb (4 at.%) crystal prove its favorable intrinsic properties to generate laser emissions in the 1 µm range with high efficiency. The efficient laser emission at ~1028 nm together with good NLO characteristics to convert its own emission into emission at ~514 nm via SHG make the LYSB:Yb (4 at.%) crystal a very promising active medium to be used in self-frequency doubling configuration.

Funder

Romanian Ministry of Research, Innovation and Digitization

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3