Influence of Terbium Doping and Annealing on the Structural and Optical Characteristics of Sputtered Zinc Oxide Thin Films

Author:

Kryshtab Tetyana1,Borkovska Lyudmyla2,Cortés Herrera Roberto Benjamín3,Kryvko Andriy4ORCID,Kolomys Oleksandr2,Mamykin Sergiy2ORCID,Portier Xavier5

Affiliation:

1. Instituto Politécnico Nacional, ESFM, Av. IPN, Ed. 9, U.P.A.L.M., Mexico City 07738, Mexico

2. V. Lashkaryov Institute of Semiconductor Physics of NASU, Pr. Nauki 41, 03028 Kyiv, Ukraine

3. Instituto Politécnico Nacional, ENCB, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Mexico City 11340, Mexico

4. Instituto Politécnico Nacional, ESIME Zacatenco, Av. IPN, Ed. Z4, U.P.A.L.M., Mexico City 07738, Mexico

5. CIMAP, Normandie University, ENSICAEN, UNICAEN, CEA, CNRS, 6 Blvd. Maréchal Juin, 14050 Caen, France

Abstract

This paper studied the structural and luminescent characteristics of undoped and doped-with-Tb3+-ions ZnO films of 200 nm and 600 nm thicknesses, grown via RF magnetron sputtering on (100) silicon substrate in Ar and Ar-O2 plasma. X-ray diffraction (XRD) patterns revealed a strong preferred orientation of ZnO and ZnO:Tb crystals of the wurtzite structure along the c-axis, perpendicular to the substrate. In the as-deposited ZnO:Tb films, the additional crystal phases, namely, Tb2O3, TbO2, and an amorphous phase, were revealed. The as-deposited undoped films were under tensile strain, that increased in the doped films. This proved the incorporation of the Tb3+ ions into the ZnO grains, and agreed with the Raman spectra investigation. The XRD data and atomic force microscopy study showed that Tb doping impeded the growth of grains and columns, respectively. The photoluminescence (PL) spectra of the doped films contained the UV band ascribed to exciton PL, a broad intrinsic defect-related band, and the narrow bands caused by the intra-shell transitions of the Tb3+ ions. Terbium doping suppressed ZnO emissions. The post-deposition rapid thermal annealing at up to 800 °C of both the undoped and doped films promoted tensile strain relaxation, grain growth, improvement in the ZnO crystal structure, and an increase in the exciton PL. The intensity of the Tb3+ PL changed non-monotonically, and was the highest for the film annealed at 600 °C. The conventional thermal annealing promoted the non-monotonic changes in the strains and grain sizes in such a way that, after annealing at 900 °C, their values became the same as in the as-deposited ZnO:Tb film. This structural change was accompanied by a decrease in the exciton and Tb3+ PL intensity. The formation of the Zn2SiO4 phase was observed via XRD, and confirmed via scanning electron microscopy. It was attributed to the interdiffusion through the film/substrate interface. The deposition in the Ar-O2 atmosphere is found to be more preferable for the formation of Tb3+ emission centers in the ZnO matrix.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3