Secondary Phase CeO2 Precipitates in Ce,Er-Doped Na0.5La0.5MoO4 Single Crystals Grown by Czochralski Method

Author:

Suvorova Elena I.1ORCID,Subbotin Kirill A.23ORCID,Lis Denis A.2,Zharikov Evgeny V.2,Buffat Philippe A.4ORCID

Affiliation:

1. A.V. Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, Leninsky pr. 59, Moscow 119333, Russia

2. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow 119991, Russia

3. Faculty of Technology of Inorganic Substances and High-Temperature Materials, Mendeleev University of Chemical Technology, Moscow 125047, Russia

4. Ecole Polytechnique Fédérale de Lausanne, Centre Interdisciplinaire de Microscopie Electronique, CH-1015 Lausanne, Switzerland

Abstract

Analytical scanning and transmission electron microscopy were used to study the microstructure of Ce,Er-doped Na0.5La0.5MoO4 laser crystals. Crystals were grown by the Czochralski method from the melts with a nominal composition of Na0.5La0.5−xCexEr0.005MoO4, where x = 0.125 and 0.15, then annealed at 700 and 1000 °C in the oxidizing atmosphere. We found the secondary phase precipitation of Ce2O3 oxide in as-grown crystals, while after high-temperature annealing the CeO2 precipitated crystals are always observed. Impurity ions Ce3+ occupy the La sites, and approximately 20% of the nominal Ce content is involved in the formation of Ce oxide secondary phase precipitates. The length of CeO2 precipitated crystals ranged between 100 nm and 550 nm (average length was 200 nm) and their width was 30–70 nm. The mechanism of CeO2 formation is discussed. The orientation relationships of Na0.5La0.5−xCexEr0.005MoO4/CeO2, the degree of coherence of the interface, and the preferential directions of their growth in the matrix were established. CeO2 crystals precipitated in the matrix cause light scattering with a wavelength comparable to the size of the precipitates and lead to deterioration of optical transparency of the material.

Funder

State assignment of Federal Scientific Research Center “Crystallography and Photonics” of Russian Academy of Sciences

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3