Abstract
We have studied the behaviour of the cubic spinel structure of FeV2O4 under high-pressure by means of powder X-ray diffraction measurements and density-functional theory calculations. The sample was characterized at ambient conditions by energy-dispersive X-ray spectroscopy, Raman spectroscopy, and X-ray diffraction experiments. One of the main findings of this work is that spinel FeV2O4 exhibits pressure-induced chemical decomposition into V2O3 and FeO around 12 GPa. Upon pressure release, the pressure-induced chemical decomposition appears to be partially reversible. Additionally, in combination with density-functional theory calculations, we have calculated the pressure dependence of the unit-cell volumes of both the spinel and orthorhombic FeV2O4 crystal structures, whose bulk moduli are B0 = 123(9) and 154(2) GPa, respectively, finding the spinel FeV2O4 to exhibit the lowest bulk modulus amongst the spinel oxides. From experimental results, the same information is herein obtained for the cubic structure only. The Raman modes and elastic constants of spinel FeV2O4 have also obtained the ambient conditions.
Funder
Spanish Research Agency (AEI) and the Spanish Ministry of Science and Investigation
Generalitat Valenciana
Spanish Ministry of Science, Innovation, and Universities
Generalitat Valenciana through the APOSTD postdoctoral Fellowship
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献