Temperature Modeling of AZ31B Alloy Plate during open-Roller Conveying Process Considering Air-Cooling Characteristics

Author:

Xu Shuang1,Wang Zebin1,Jia Weitao2ORCID,Chen Xingrui3ORCID,Dong Yunyun4

Affiliation:

1. College of Data Science, Taiyuan University of Technology, Taiyuan 030024, China

2. College of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China

3. Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM), School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072, Australia

4. College of Software, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

In the process of open-roller conveying, magnesium alloy plates easily produce temperature drops and uneven temperatures. Ignoring the heat dissipation caused by the contact between the plate and the roller table, the process can be described as a process of air cooling. The present study aimed to investigate the temperature distribution and evolution of a magnesium alloy plate during the process. The air-cooling process of the AZ31B magnesium alloy plate was investigated and analyzed in detail under different initial temperatures and plate thicknesses, with a specific focus on the temperature distribution along both the width and thickness directions. The results show that the temperature-difference curves between the end face and the center under different air-cooling conditions appeared to have four stages: rapid increase, slow increase, basic stable and slow decline. To facilitate the establishment of the temperature model, the whole air-cooling process was approximately divided into two independent one-dimensional heat-conduction processes in the thickness direction and the width direction. Subsequently, one-dimensional steady-state heat-conduction models were developed in various directions, based on the fundamental principles of heat transfer and assuming that the adjacent temperature-drop layer satisfied the quadratic function distribution. Through the superposition of cooling with time in two directions, the temperature evolution at different positions in the process of air cooling can be solved accurately.

Funder

National Natural Science Foundation of China

Fundamental Research Program of Shanxi Province

Key Research and Development Program of Shanxi Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3