The Effect of Full-Scale Exchange of Ca2+ with Co2+ Ions on the Crystal Structure and Phase Composition of CaHPO4·2H2O

Author:

Alotibi Satam1ORCID,Alshaaer Mazen12

Affiliation:

1. Department of Physics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

2. Department Mechanics of Materials and Constructions, Vrije Universiteit Brussels (VUB), Pleinlaan 2, 1050 Brussels, Belgium

Abstract

The influence of ionic substitution in the Ca1−xCoxHPO4·nH2O compound was studied systematically for the first time. Among the fascinating features of these biomaterials is that they can be easily tailored for specific applications, for example, as biocements and bioceramics. Different molar concentrations of Co(NO3)2·6H2O, Ca(NO3)2·4H2O, and NaH2PO4·2H2O compounds were employed in determining the starting solutions utilized in the present study. The experimental findings reveal that, when the Co/Ca molar ratio is below 0.67 (BCo4), Co doping (the partial substitution of Ca by Co) takes place in brushite as a monophase. However, in the Co/Ca 0.67–1.5 molar ratio range (BCo4–BCo6), biphasic Co3(PO4)2·8H2O/CaHPO4·2H2O crystals start to precipitate. Full Ca replacement by Co results in the precipitation of nanostructured monoclinic cobalt phosphate and orthorhombic ammonium cobalt phosphate hydrate. Subsequent X-ray photoelectron spectroscopy (XPS), powdered X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) analyses, along with thermogravimetric analysis (TGA), confirmed that the starting solution ratio of Co/Ca had a significant influence on the material’s microstructure, while tuning this ratio ultimately tailored the desired properties of the material for the intended applications.

Funder

Prince Sattam Bin Abdulaziz University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3