Crystal Structure and Functional Characterization of an S-Formylglutathione Hydrolase (BuSFGH) from Burkholderiaceae sp.

Author:

Hwang Jisub12ORCID,Do Hackwon12,Shim Youn-Soo3ORCID,Lee Jun Hyuck12ORCID

Affiliation:

1. Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea

2. Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea

3. Department of Dental Hygiene, Sunmoon University, Asan 31460, Republic of Korea

Abstract

S-formylglutathione hydrolases (SFGHs) catalyze the hydrolysis of S-formylglutathione to formate and glutathione using the conserved serine hydrolase catalytic triad residues (Ser-His-Asp). SFGHs have broad substrate specificity, including, for example, ester bond-containing substrates. Here, we report the crystal structure of Burkholderiaceae sp. SFGH (BuSFGH) at 1.73 Å resolution. Structural analysis showed that the overall structure of BuSFGH has a typical α/β hydrolase fold, with a central β-sheet surrounded by α-helices. Analytical ultracentrifugation analysis showed that BuSFGH formed a stable dimer in solution. The enzyme activity assay indicated that BuSFGH has a high preference for short-chain p-nitrophenyl esters, such as p-nitrophenyl acetate. The activity of BuSFGH toward p-nitrophenyl acetate was five times higher than that of p-nitrophenyl butylate. Molecular modeling studies on the p-nitrophenyl acetate-bound BuSFGH structure indicate that Gly52, Leu53, Trp96, His147, Ser148, Trp182, Phe228, and His259 residues may be crucial for substrate binding. Collectively, these results are useful for understanding the substrate-binding mechanism and substrate specificity of BuSFGH. They can also provide useful insights for designing modified BuSFGHs with different substrate specificities.

Funder

Sun Moon University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3