High-Temperature Energy Storage Properties of Bi0.5Na0.5TiO3-0.06BaTiO3 Thin Films

Author:

Alaoui Ilham Hamdi1ORCID,Lemée Nathalie1,Belhadi Jamal1,Le Marrec Françoise1,Cantaluppi Anna1,Lahmar Abdelilah1ORCID

Affiliation:

1. Laboratory of Condensed Matter Physics, University of Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens, France

Abstract

Bi0.5Na0.5TiO3-0.06BaTiO3 (BNT-BT) thin films were prepared via both chemical solution (CSD) and pulsed laser deposition (PLD). The structural, dielectric, and ferroelectric properties were investigated. High stability of the dielectric permittivity or TCC (∆ε/ε (150 °C) ≤ ±15%) over a wide temperature range from room temperature to 300 °C was obtained. Distinctly, the CSD film showed high TCC stability with variation of ±5% up to 250 °C. Furthermore, the CSD film showed an unsaturated ferroelectric hysteresis loop characteristic of the ergodic relaxor phase. However, the PLD one exhibited an almost saturated loop characteristic of the coexistence of both ergodic and non-ergodic states. The energy storage properties of the prepared films were determined using P–E loops obtained at different temperatures. The results show that these films exhibited a stable and improved energy storage density comparable to ceramic capacitors. Moreover, the CSD film exhibited more rigidity and better energy storage density, which exceeded 1.3 J/cm3 under a weak applied field of 317 kV/cm, as well as interesting efficiency in a large temperature range. The obtained results are very promising for energy storage capacitors operating at high temperatures.

Funder

Region of Hauts de France

Amiens Metropole

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3