Crystallographic and TEM Features of a TBC/Ti2AlC MAX Phase Interface after 1300 °C Burner Rig Oxidation

Author:

Smialek James L.1ORCID,Garg Anita1,Harder Bryan J.1,Cuy Michael D.1

Affiliation:

1. NASA Glenn Research Center, Cleveland, OH 44135, USA

Abstract

A FIB/STEM interfacial study was performed on a TBC/Ti2AlC MAX phase system, oxidized in an aggressive burner rig test (Mach 0.3 at 1300 °C for 500 h). The 7YSZ TBC, α-Al2O3 TGO, and MAXthal 211TM Ti2AlC base were variously characterized by TEM/STEM, EDS, SADP, and HRTEM. The YSZ was a mix of “clean” featureless and “faulted” high contrast grains. The latter exhibited ferro-elastic domains of high Y content tetragonal t″ variants. No martensite was observed. The TGO was essentially a duplex α-Al2O3 structure of inner columnar plus outer equiaxed grains. It maintained a perfectly intact, clean interface with the Ti2AlC substrate. The Ti2AlC substrate exhibited no interfacial Al-depletion zone but, rather, numerous faults along the basal plane of the hexagonal structure. These are believed to offer a means of depleting Al by forming crystallographic, low-Al planar defects, proposed as Ti2.5AlC1.5. These characterizations support and augment prior optical, SEM, and XRD findings that demonstrated remarkable durability for the YSZ/Ti2AlC MAX phase system in aggressive burner tests.

Funder

NASA Fundamental Aeronautics Program

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3