Enhanced Performances of Quantum Dot Light-Emitting Diodes with an Organic–Inorganic Hybrid Hole Injection Layer

Author:

Chen Ling1,Jiang Donghuai1,Du Wenjing1,Shang Jifang1,Li Dongdong2,Liu Shaohui1

Affiliation:

1. Henan Key Laboratory of Electronic Ceramic Materials and Application, College of Materials Engineering, Henan University of Engineering, Zhengzhou 451191, China

2. Huaibei Yeolight Technology Co., Ltd., Huaibei 235000, China

Abstract

PEDOT:PSS (polyethylene dioxythiophene:polystyrenesulfonate) is a commonly used hole injection layer (HIL) in optoelectronic devices due to its high conductive properties and work function. However, the acidic and hygroscopic nature of PEDOT:PSS can be problematic for device stability over time. To address this issue, in this study we demonstrated the potential of an organic–inorganic hybrid HIL by incorporating solution-processed WOx nanoparticles (WOx NPs) into the PEDOT:PSS mixture. This hybrid solution was found to have a superior hole transport ability and low Ohmic contact resistance contributing to higher brightness (~62,000 cd m−2) and current efficiency (13.1 cd A−1) in the manufactured quantum-dot-based light-emitting diodes (QLEDs). In addition, the resulting devices achieved a relative operational lifetime of 7071 h, or approximately twice that of traditional QLEDs with PEDOT:PSS HILs. The proposed method is an uncomplicated, reliable, and low-cost way to achieve long operational lifetimes without sacrificing efficiency in optoelectronic devices.

Funder

National Natural Science Foundation of China

Program for Science & Technology Innovation Talents in Universities of Henan Province

Excellent Youth Fund of Henan Natural Science Foundation

Natural Science Foundation of Henan Province, China

Scientific Research Foundation of the Higher Education Institutions of Henan Province, China

Henan University of Engineering Foundation, China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3