Defective Graphene Effects on Primary Displacement Damage and He Diffusion at a Ni–Graphene Interface: Molecular Dynamics Simulations

Author:

Huang Hai12ORCID,Yuan Xiaoting1,Ge Xiaoxin1,Peng Qing3ORCID

Affiliation:

1. Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China

2. Department of Nuclear Science & Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

3. State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Ni–graphene nanocomposites with high-density interfaces have enormous potential as irradiation-tolerant materials applied in Gen-IV reactors. Nevertheless, the mechanism wherein the intrinsic and/or irradiation-induced defects of graphene affect the irradiation tolerance of the composites remains poorly understood. Here, we investigate the effects of the two types of defective graphene on the displacement damage and He diffusion of the composites, respectively, using atomistic simulations. The introduction of the intrinsic defects of graphene has a significant effect on the Ni lattice structure near the Ni–graphene interface, especially showing that after displacement cascades, the number of defects gradually increases with the increase in graphene-defective size due to the formation and growth of stacking fault tetrahedra. The existence of the irradiation-induced defects of graphene does not diminish the ability of the interface to trap He atoms/clusters and even may be maintained or improved, mainly reflected in the fact that many isolated He atoms and small clusters can gradually migrate toward the interface and the fraction of He within the interface is up to 37.72% after 1 ns. This study provides an important insight into the understanding of the association relationships of defective graphene with the irradiation tolerance of composites.

Funder

National Natural Science Foundation of China

Key Project for Science and Technology Development of Henan Province

State Key Laboratory of Nuclear Physics and Technology, Peking University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3