Review of Piezocatalysis and Piezo-Assisted Photocatalysis in Environmental Engineering

Author:

He Juhua1ORCID,Dong Chencheng2,Chen Xiaojuan1,Cai Heshan1,Chen Xin1,Jiang Xueding1,Zhang Yan1,Peng Anan1,Badsha Mohammad A.H.3ORCID

Affiliation:

1. School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China

2. Department of Civil Engineering, Hong Kong University, Hong Kong, China

3. Department of Civil and Environmental Engineering, California Polytechnic State University, San Luis Obispo, CA 93407, USA

Abstract

In light of external bias potential separating charge carriers on the photocatalyst surface, piezo materials’ built-in electric field plays a comparable role in enhancing photocatalyst performance. The synergistic effect provided by combining piezo materials assures the future of photocatalysis in practical applications. This paper discusses the principles and mechanisms of piezo-photocatalysis and various materials and structures used for piezo-photocatalytic processes. In piezo-photocatalyst composites, the built-in electric field introduced by the piezo component provides bias potential and extracts photocatalytically generated charge carriers for their subsequent reaction to form reactive oxygen species, which crucially affects the catalytic performance. In the composites, the shape and structure of substrate materials particularly matter. The potential of this technology in other applications, such as energy generation and environmental remediation, are discussed. To shed light on the practical application and future direction of the technique, this review gives opinions on moving the technique forward in terms of material development, process optimization, pilot-scale studies, comprehensive assessment of the technology, and regulatory frameworks to advance practical applications, and by analyzing its principles, applications, and challenges, we hope to inspire further research and development in this field and promote the adoption of piezo-photocatalysis as a viable treatment method for treating emerging pollutants in wastewater.

Funder

Foshan University Senior Professional Fund

Natural Science Foundation of Guangdong Province of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3