Hydrothermal Synthesis and Crystal Structure of Vesuvianite Compounds, Ca19Al13Si18O71(OH)7 and Sr19Fe12Ge19O72(OH)6

Author:

Smart Megan M.1ORCID,Moore Cheryl A.1ORCID,McMillen Colin D.1,Kolis Joseph W.1

Affiliation:

1. Department of Chemistry, Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Clemson, SC 29634, USA

Abstract

New compositions of synthetic vesuvianite were investigated using hydrothermal synthesis. High quality single crystals with the formula Ca19Al13Si18O71(OH)7 (I) having the vesuvianite-type structure were crystallized during a high temperature hydrothermal growth reaction. Starting materials of Al2O3 and CaSiO3 reacted at 670 °C and 2 kbar in 0.5 M aqueous alkali hydroxide mineralizer to form single crystals up to 0.25 mm per edge. Similar reactions employing SrO, Fe2O3, and GeO2 reacting at 580 °C and 2 kbar in 6 M aqueous alkali hydroxide mineralizers led to the formation of the analogous Sr19Fe12Ge19O72(OH)6 (II). These crystals were obtained in sizes up to 0.5 mm per edge. The structures of both compounds were refined in space group P4/nnc after careful evaluation of the diffraction data and subsequent test refinements. Elemental analysis indicated only the presence of Ca2+, Al3+, and Si4+ cations in I and only the presence of Sr2+, Fe3+, and Ge4+ cations in II, representing synthetic vesuvianite comprising the minimum number of unique cations. The use of larger cations than are typically found in natural vesuvianite, such as Sr2+, Fe3+, and Ge4+, resulted in an expanded crystalline lattice and extended the vesuvianite analogs to include an increasing variety of elements.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference35 articles.

1. The Chemistry of Vesuvianite;Groat;Can. Mineral.,1992

2. A Comprehensive Structure-Model for Vesuvianite; Symmetry Variations and Crystal Growth;Allen;Can. Mineral.,1992

3. Idocrase: Synthesis, Phase Relations and Crystal Chemistry;Ito;Am. Mineral.,1970

4. Chemical Variation in Vesuvianite;Fitzgerald;Mineral. Petrol.,1992

5. Excess Y-Group Cations in the Crystal Structure of Vesuvianite;Groat;Can. Mineral.,1994

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3