Combined Effect of In and Ce on Microstructure and Properties of Ag10CuZnSn Low-Silver Brazing Filler Metals

Author:

Xu Jiachen12,Fu Yucan1ORCID,Yang Yan2,Li Zhen2,Wang Li2,Xue Songbai3ORCID,Wu Jie3

Affiliation:

1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. College of Electrical Engineering, Nanjing Vocational University of Industry Technology, Nanjing 210023, China

3. College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

In this study, trace amounts of In and Ce elements were composite added into a Ag10CuZnSn low-silver brazing filler metal, and the effects of the composite alloying on the solidus and liquidus temperatures, the spreading performance, the microstructure of the filler metal, and the mechanical properties of the joints prepared with these filler metals were studied. The results reveal that the In element can significantly decrease the solidus and the liquidus temperatures of the Ag10CuZnSn alloy, while the Ce element has little effect on the melting temperature. Trace amounts of In and Ce elements can obviously increase the spreading areas of the filler metals on the pure Cu and 304 stainless steel base metals. The In and Ce elements can refine the microstructure of the filler metals. When the contents of In and Ce are 1.5 wt% and 0.15 wt%, respectively, the microstructure refinement effect is the most obvious, and the shear strength of the 304 stainless steel brazed joint also achieves a maximum value of 375 MPa. Excessive addition of In and Ce can form brittle intermetallic compounds in the filler metal, decreasing the brazed joints' shear strength.

Funder

Start-up Fund for New Talented Researchers of Nanjing Vocational University of Industry Technology

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3