Improving Texture Prediction by Increasing Mesh Resolution in Submodel: A Crystal Plasticity FE Study and Experiment Verification

Author:

Liu Yu12,Zhang Qi2,Ge Qinqin3,Wang Xingxing2ORCID,Shen Yifu1ORCID

Affiliation:

1. College of Materials Science and Technology, NUAA, Nanjing 211106, China

2. School of Mechanical Engineering, Nantong University, Nantong 226019, China

3. Mechanical Maintenance Department, Nantong Cellulose Fibers Co., Ltd., Nantong 226007, China

Abstract

Crystal plasticity finite element simulations require tremendous computation time and, accordingly, coarse mesh is generally used. To improve the texture prediction, Submodelling was applied to feature grains in this study. A simulation of the Wholemodel (whole sample) was firstly carried out to obtain the global texture, and then a smaller region from the Wholemodel was selected, reconstructed and finely meshed in the Submodel. The movement on the selected region boundary, obtained from the Wholemodel, was used to deform the Submodel. The Submodel reproduced the predictions in the Wholemodel, and the texture prediction, especially at micro-scale, was greatly enhanced in the Submodel due to the fine mesh. This significant drop in the Submodel computation time marks an ~85% decrease compared to the Wholemodel.

Funder

Natural Science Horizontal Research Project of Nantong University

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3