Micro-Structure and Dielectric Properties of Ti3C2Tx MXene after Annealing Treatment under Inert Gases

Author:

Liu Zhiwei1,Liu Zhaobo1,Li Guanlong1,Zhao Yan1,Wang Kai1,Chen Xiangbao1

Affiliation:

1. School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Abstract

At present, the rapid development of electronic devices such as batteries, sensors, capacitors and so on is creating a huge demand for lightweight materials with a designed structure and function. Ti3C2Tx MXene, a lightweight two-dimensional (2D) nanomaterial with excellent electronic properties, has been favored in this field. In this work, Ti3C2Tx MXene was annealed under an inert gas (N2, Ar and CO2) atmosphere to design the crystal structure and interface of the nanosheets, and then the modified nanosheets with specific changes in dielectric properties were obtained. Among them, the key temperature points (100 °C, 300 °C, 500 °C and 800 °C) in the thermogravimetric (TG) test under an air atmosphere were used as the annealing temperature. When annealing under an air atmosphere, with the increase in temperature, the Ti layer gradually oxidized and evaporated, and the original two-dimensional structure was partly destroyed with some of the C atoms reacting with O2 to form CO2. In the inert gas atmosphere, however, the 2D structure is preserved, except that the surface end groups and layer spacing are changed. In addition, some N element doping was introduced into the nanosheets after N2 atmosphere treatment, which changed the original lattice structure. After the Ar atmosphere treatment, some Ti atoms on the surface were oxidized in situ to form TiO2 grains with different crystal forms, which increased the interfacial area. The C-TiO2 structure of the nanosheets was more complete after treatment with the CO2 atmosphere. All the nanosheets after heat treatment with an inert gas atmosphere retained the characteristic morphology of 2D materials, and different changes in the micro-structure caused changes in dielectric properties, thereby meeting the needs of 2D nanomaterials Ti3C2Tx MXene in different scenarios.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3