Antibacterial Properties of Three-Dimensional Flower Cluster ZIF-L Modified by N-Doped Carbon Dots

Author:

He Jing1,Xiong Yuanyuan1,Mu Huaixuan1,Li Peini1,Deng Yiqing1,Zou Wangcai1,Zhao Qiang1ORCID

Affiliation:

1. School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China

Abstract

To overcome the problems of excessive ion release of inorganic antimicrobial agents and the biological toxicity of organic antimicrobial agents, metal organic framework (MOF) materials are attracting attention in the antimicrobial field due to their tunable structural properties and multifunctional applications. Most current studies are limited to zeolitic imidazolate framework-8 (ZIF-8), which has low antimicrobial efficiency by component release. Two-dimensional (2D) zeolitic imidazolate framework nanoleaf (ZIF-L) possesses better antimicrobial effect than ZIF-8 because of the physical destructionto bacteria by its blade tip. However, the in-situ synthesis method of two-dimensional ZIF-L, and the problem of leaf accumulation, limit the wider application of ZIF-L. In this paper, three-dimensional(3D) flower cluster-like ZIF-L (2–3 μm, +31.23 mv), with better antibacterial effects and a wider application range, was prepared by stirring without adding other reagents. To further improve the antibacterial performance of ZIF-L, nitrogen-doped carbon dots (NCDs) were electrostatically absorbed by ZIF-L to obtain NCDs@ZIF-L composites. The NCDs@ZIF-L composites showed over 95% and 85% antibacterial efficiency against E. coli and S. aureus, respectively, at a concentration of 0.25 mg/mL. In addition, polylactic acid (PLA) films mixed with ZIF-L and NCDs@ZIF-L composites with PLA showed good antimicrobial properties, indicating the applicability of ZIF-L and NCDs@ZIF-L composites for antibacterial materials. With a unique three-dimensional crystal shape and positive surface charge, ZIF-L and NCDs@ZIF-L composites exhibited excellent antibacterial properties, which provided a new perspective for the study of antimicrobial materials.

Funder

Industry-university-research cooperation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3