Magnetic and Magnetoelectric Properties of AurivilliusThree- and Four-Layered Intergrowth Ceramics

Author:

Veenachary Vadla1,Ramana Eskilla Venkata2ORCID,Babu Simhachalam Narendra1ORCID,Puli Venkata Sreenivas34ORCID,Srinivas Adiraj5,Srinivasan Gopalan6ORCID,Saha Sujoy6,Prasad Guduru1,Prasad Nandiraju Venkata1

Affiliation:

1. Materials Research Laboratory, Department of Physics, Osmania University, Hyderabad 500 007, India

2. I3N-Aveiro, Department of Physics, University of Aveiro, Aveiro-3810 193, Portugal

3. Smart Nanomaterials Solutions, Orlando, FL 32707, USA

4. National Research Council, Washington, DC 20001, USA

5. Advanced Magnetics Group, Defence Metallurgical Research Laboratory, Hyderabad 500 058, India

6. Physics Department, Oakland University, Rochester, MI 48309, USA

Abstract

In this work, we have prepared intergrowth of multiferroic compounds namely Bi4RTi3Fe0.7Co0.3O15-Bi3RTi2Fe0.7Co0.3O12−δ (BRTFCO15-BRTFCO12) (rare earth (R) = Dy, Sm, La) by solid-state reaction method. From the X-ray diffraction Rietveld refinement, the structure of the intergrowths was found to be orthorhombic in which satisfactory fittings establish the existence of three-layered (space group: b 2 c b) and four-layered compounds (space group: A21am). Analysis of magnetic measurements confirmed a larger magnetization for theSm-modified intergrowth compound (BSTFCO15-BSTFCO12) compared to Dy- and La-doped ones. The emergence of higher magnetic properties can be due to distortion in the unit cell when some Bi3+ ions are replaced with the Sm3+, bonding of Fe3+-O-Co3+ as well as a possible mixture of FexCoy-type nanoparticles that are formed generally in the synthesis of intergrowths. The changes in the magnetic state of the Aurivillius intergrowths have been reflected in the magnetoelectric (ME) coupling: higher ME coefficient (~30 mV/Cm-Oe) at lower magnetic fields and is constant up to 3 kOe. The results were corroborated by Raman spectroscopy and variation of temperature with magnetization data. The results revealed that the RE-modified intergrowth route is an effective preparative method for higher-layer Aurivillius multiferroic ceramics.

Funder

CSIR-HRDG

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3