Affiliation:
1. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
2. State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Pangang Group Research Institute Co., Ltd., Panzhihua 617000, China
Abstract
To improve the surface quality of Ti6Al4V parts formed by selective laser melting (SLM), this paper systematically studies the effects of laser power, scanning speed and inclination angle on the different surface morphology and roughness of parts. On this basis, the effect of surface remelting and multi-layer profile scanning process strategies on improving the surface quality of parts is explored. The upper surface roughness varies parabolically with increasing line energy density, the line energy density value that minimizes the upper surface roughness is around 0.22 J/mm, and the minimum Ra value is 4.41 μm. The roughness of upper and lower sides increases significantly with the increase in scanning speed. As the inclination angle increases, the roughness of the upper and lower sides gradually decreases, which is caused by the combined influence of powder adhesion and step effect. The surface remelting process strategy can reduce the upper surface roughness by 35.68% and reduce its Ra value to 2.65 μm. The multi-layer profile scanning process strategy can reduce the upper side and vertical side roughness by more than 50%, down to Ra 5.10 μm and Ra 4.61 μm, respectively.
Funder
State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization
Basic and Applied Basic Research Foundation of Guangdong Province
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献