Gemological and Mineralogical Characteristics of Emerald from Ethiopia

Author:

Huang Zixuan1,Li Geng1,Weng Liqun2,Zhang Meilun1

Affiliation:

1. School of Gemology, China University of Geosciences, Beijing 100083, China

2. National Jewelry Testing Center (Guangdong) Co., Ltd., Guangzhou 511483, China

Abstract

Ethiopia has been gaining attention in recent years as an emerging source of high-quality emerald. Ethiopian emerald samples with different colors ranging from dark green to light green were selected to study the gemological properties, chemical composition, and spectral characteristics. The Ethiopian emeralds were examined using conventional gemological instruments, including X-ray fluorescence spectrometry, LA-ICP-MS, UV/Vis/NIR, infrared spectrometry, and Raman spectrometry, providing a wealth of data and research information related to Ethiopian emeralds. The EDXRF results show that the chemical composition of Ethiopian emeralds is distinctly regional compared to emeralds of Colombian origin, being low in Cr, low in V, and high in Fe. LA-ICP-MS results demonstrate consistent results for Cr (734.34 to 1644.3 ppmw), V (89.61 to 106.61 ppmw), and Fe (4468.04 to 5022.3 ppmw) based on the chemical composition analysis by EDXRF. In addition, the LA-ICP-MS assay revealed that the combination of alkali metals (Li, Na, K, Rb, and Cs) and some trace elements (Sc, V, Cr, and Fe) could distinguish the Ethiopian emeralds from those from other regions. The Ethiopian emerald had absorption of Fe2+, Cr3+, V3+, and Fe3+, and the typical absorption intensity of Fe2+ (around 850 nm) was higher than that of Fe3+ (around 371 nm) in the UV/Vis/NIR spectra. The infrared spectrum of samples indicated that the absorption of type II H2O was higher than type I H2O in the emeralds from Ethiopia, which is consistent with the high content of alkali metals detected by LA-ICP-MS that would lead to an increase in the content of type II H2O. The Raman spectra showed absorption at 410 cm−1, 569 cm−1, 687 cm−1, 995 cm−1, and 1067 cm−1, with an emerald species recognition pattern. The gas–liquid two-phase inclusions of the emerald in this area were mainly CO2 and H2O, and the samples contained typical dark inclusions of magnesium-rich biotite sheets that revealed the tectonic-magmatic-related geological environment in this region.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference56 articles.

1. An update on color in gems Part 3: Colors caused by band gaps and physical phenomena;Fritsch;Gems Gemol.,1988

2. Pressure-Temperature-Fluid Constraints for the Formation of the Halo-Shakiso Emerald Deposit, Southern Ethiopia: Fluid Inclusion and Stable Isotope Studies;Nicol;Can. Mineral.,2022

3. Emerald deposits and occurrences: A review;Groat;Ore Geol. Rev.,2008

4. Rondeau, B. (2003). Matériaux Gemmes de Référence du Museum National D’Histoire Naturelle: Exemples de Valorisation Scientififique d’une Collection de Minéralogie et Gemmologie. [Ph.D. Thesis, University of Nantes].

5. Emeralds, sapphires, pearls and other gemmological materials from the Preslav gold treasure (X century) in Bulgaria;Strack;Geochem. Minerals,2010

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3