High-Temperature Oxidation Behaviors of 321 Steel with Y or Nb Micro-Alloying

Author:

Yang Ximing12,Zeng Zhijie1,Wang Xu1,Li Xing1,Guo Chengjun12,Xiao Xiangpeng12ORCID,Yang Bin1

Affiliation:

1. Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China

2. Jiangxi Advanced Copper Industry Research Institute, Yintan 335000, China

Abstract

The effects of Y or Nb addition on the oxidation behavior of 321 steel at high temperatures were investigated by scanning electron microscopy (SEM), energy spectroscopy (EDS) and X-ray diffractometer (XRD). At the same time, the oxidation mechanism and oxidation kinetics of rare earth Y or Nb addition are explored. The results show that temperature greatly influences the high-temperature oxidation resistance of the alloys, and the oxidation phenomenon of the alloy becomes more obvious as the temperature increases. Adding 0.5 wt.% Nb or 0.045 wt.% Y elements can effectively improve the oxidation resistance of 321 stainless steel at high temperatures. The addition of rare earth Y can promote the diffusion of Cr in the matrix, leading to increased Cr content in the oxide film and the eventual formation of a dense Cr2O3 film, which effectively hinders the continuation of the oxidation reaction. As a result of the Nb addition, the outward diffusion of Cr elements can be effectively inhibited, Cr and O ion bond can be strengthened, the oxidation rate can be reduced, the adhesion rate of oxide film can be increased, and the oxidation resistance of 321 stainless steel can be improved.

Funder

National Key Research and Development Program of China

Science and technology projects of Jiangxi Provincial Department of Education

Scientific Research Starting Foundation for Advanced Talents of Jiangxi University of Science and Technology

the Project of the Key Scientific and Technological of Jiangxi Province

Ningbo Enterprise Innovation Consortium Special Project

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3