Catalyst-Free Synthesis of Novel 4-(Benzofuran-2-yl)-N-phenylthiazol-2(3H)-imines, Crystal Structure Elucidation, and the Effect of Phenyl Substitution on Crystal Packing

Author:

Abdel-Wahab Bakr F.1,Kariuki Benson M.2ORCID,Mohamed Hanan A.1,El-Hiti Gamal A.3ORCID

Affiliation:

1. Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt

2. School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK

3. Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia

Abstract

A one-pot reaction of an equimolar mixture of 4-methoxyaniline, phenyl isothiocyanate, and 2-bromoacetylbenzofuran in absolute ethanol in the absence of any catalysts afforded 4-(benzofuran-2-yl)-3-(4-methoxyphenyl)-N-phenylthiazol-2(3H)-imine with an 83% yield. Under similar conditions, 4-flouroaniline provided a mixture of the expected 4-(benzofuran-2-yl)-3-(4-fluorophenyl)-N-phenylthiazol-2(3H)-imine and unexpected 4-(benzofuran-2-yl)-N-(4-fluorophenyl)-3-phenylthiazol-2(3H)-imine at an overall 73% yield. The structures of the synthesized heterocycles were confirmed using NMR spectroscopy. The products were recrystallized from dimethylformamide to afford samples suitable for structural determination via single-crystal diffraction. The molecules of the products share a common backbone and have similar conformations. They also display some common intermolecular interactions, including C–H···X (X = N, O, π) and π···π contacts. The molecules differ due to the methoxy and fluoro substituents on their phenyl rings, resulting in variations in the extended network in the crystals. Electron density maps and Hirshfeld surfaces have been used to rationalize the intermolecular contacts.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3