A Computational Study on Polar ABiO3 (A = Ca, Zn, Mg) Compounds with Large Electric Polarization

Author:

Rus Florina Ștefania1ORCID,Gonçalves João Nuno2ORCID

Affiliation:

1. National Institute for Research and Development in Electrochemistry and Condensed Matter, 300569 Timisoara, Romania

2. CICECO—Aveiro Institute of Materials and Physics Department, Universidade de Aveiro, 10-193 Aveiro, Portugal

Abstract

Bismuth-based oxides with chemical formula ABiO3, where A = Ca, Zn, Mg, have been recently synthesized and suggested to host ferroelectricity. As these materials possess favorable optical properties, the presence of ferroelectricity with large polarization would further enhance the possible applications, for example, in photovoltaics by improving the separation of charge carriers. In this work, first-principles Density Functional Theory (DFT) calculations are performed to study the relative stability of the different polymorphs and to investigate the structural, electronic, and ferroelectric properties. Furthermore, the effect of compressive and tensile in-plane strain on the polarization and electronic properties is also considered. Our study suggests that CaBiO3 should have a large electric polarization (1.8 C/m2) comparable to the one of BiFeO3. Interestingly, the very high polarization appears with only slightly anomalous values of Born effective charges, which would point out a dominant ionic contribution. Our results call for further studies, both from experimental and theoretical sides, to confirm the large electric polarization CaBiO3 predicted in this work. For ZnBiO3 and MgBiO3, we have demonstrated that, up to large values of strain, the perovskite structure retains favorable ferroelectric and electronic (band gap) properties.

Funder

project HPC-EUROPA3

EC Research Innovation Action under the H2020 Programme

CNR -SPIN c/o Department of Physical and Chemical Sciences, University of L’Aquila

CINECA

Portuguese Foundation for Science and Technology/MCTES

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3