Effect of Cooling Rate on Crystallization Behavior during Solidification of Hyper Duplex Stainless Steel S33207: An In Situ Confocal Microscopy Study

Author:

Wang Yong12ORCID,Mu Wangzhong2

Affiliation:

1. Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education & Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steelmaking, Wuhan University of Science and Technology, Wuhan 430081, China

2. Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden

Abstract

Hyper duplex stainless steel (HDSS) is a new alloy group of duplex stainless steels with the excellent corrosion resistance and mechanical properties among the existing modern stainless steels. Due to the incorporation of the high content of alloying elements, e.g., Cr, Ni, Mo, etc., the crystallization behavior of δ-ferrite from liquid is of vital importance to be controlled. In this work, the effect of the cooling rate (i.e., 4 °C/min and 150 °C/min) on the nucleation and growth behavior of δ-ferrite in S33207 during the solidification was investigated using a high-temperature confocal scanning laser microscope (HT-CLSM) in combination with electron microscopies and thermodynamic calculations. The obtained results showed that the solidification mode of S33207 steel was a ferrite–austenite type (FA mode). L→δ-ferrite transformation occurred at a certain degree of undercooling, and merging occurred during the growth of the δ-ferrite phase dendrites. Similar microstructure characteristics were observed after solidification under two different cooling rates. The variation in the area fraction of δ-ferrite with different temperatures and time intervals during the solidification of S33207 steels was calculated at different cooling rates. The post-microstructure as well as its composition evolution were also briefly investigated. This work shed light on the real-time insights for the crystallization behavior of hyper duplex stainless steels during their solidification process.

Funder

Swedish Foundation for International Cooperation in Research and Higher Education

VINNOVA

SSF Strategic Mobility

Swedish Steel Producers’ Association

Axel Ax:-son Johnsons forskningsfond, Prytziska fonden nr 2

Gerhard von Hofstens Stiftelse för Metallurgisk forskning

National Natural Science Foundation of China

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3