Phase Compositions and Microwave Dielectric Properties of Na1+xSrB5O9+0.5x Ceramics

Author:

Lu Xuepeng1,Wu Peng2,Yang Huimin3,Yang Min3,Zheng Yong3

Affiliation:

1. School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China

2. College of Chemistry and Materials, Longyan University, Longyan 364012, China

3. College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

Microwave dielectric ceramics composed of Na1+xSrB5O9+0.5x (0 ≤ x ≤ 0.125) were synthesized via a traditional solid-state reaction approach. The effects of non-stoichiometric Na on the crystal structures, phase compositions, chemical bond characteristics, and microwave dielectric properties of the Na1+xSrB5O9+0.5x ceramics were systematically studied. All Na1+xSrB5O9+0.5x ceramics sintered at optimum temperatures consisted of a NaSrB5O9 solid-solution phase and a SrB2O4 phase. Appropriate excess Na could suppress the generation of the SrB2O4 phase, and the lowest content of the SrB2O4 phase was achieved at x = 0.075. The εr values of the Na1+xSrB5O9+0.5x ceramics were primarily affected by the relative density and molecular polarization. The Q × f values showed a positive correlation with the lattice energy. The τf value was correlated to the SrB2O4 phase content, bond valence, and bond energy. Typically, the Na1.075SrB5O9.0375 ceramic sintered at 825 °C possessed good microwave dielectric properties of εr = 5.61, Q × f = 31, 937 GHz, and τf = −3.09 ppm/°C, which are suitable for high-frequency, low-temperature co-fired ceramics (LTCCs) substrate applications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Educational Commission

Natural Science Foundation of Fujian Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3