Thermoelectric Properties of PbS Doped with Bi2S3 and Cu2S Prepared by Hydrothermal Synthesis and Spark Plasma Sintering

Author:

Wang Wei1,Xian Cong1,Ou Yun2,He Zhijian1,Xie Shuhong3ORCID

Affiliation:

1. Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China

2. Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, Hunan University of Science and Technology, Xiangtan 411201, China

3. Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China

Abstract

Hierarchical PbS powders doped with different contents of Bi2S3 and Cu2S were synthesized using the hydrothermal method. Subsequently, the powders were subjected to spark plasma sintering (SPS) for consolidation into bulk ceramics. X-ray photoelectron spectroscopy results showed that Bi2S3 and Cu2S were doped into PbS successfully. The effect of doping with different Bi2S3 and Cu2S contents on thermoelectric performance was investigated systematically. The results showed that pure PbS was an n-type semiconductor, and Bi2S3 doping or Bi2S3-Cu2S co-doping could decrease the thermal conductivity of PbS effectively. PbS doped with 1% Bi2S3 exhibited a moderate Seebeck coefficient, high electric conductivity, and low thermal conductivity simultaneously, thus attaining a maximum figure of merit ZT of 0.55 at 773 K. PbS doped with 1% Bi2S3-1% Cu2S exhibited an enhanced power factor and reduced thermal conductivity at an elevated temperature; the maximum ZT value obtained at 773 K was 0.83, which is more than twice that of pure PbS at 758 K (0.29), as a result.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3