Preparation of a Graphene-Enhanced Hydroxyapatite Film on Dolomitic Marble by the Sol-Gel Method

Author:

Wang Feng1ORCID,Li Di2,Gu Yaoqi1,Wei Shuya1

Affiliation:

1. Institute of Cultural Heritage and History of Science & Technology, University of Science and Technology Beijing, Beijing 100083, China

2. Beijing Stone Carving Art Museum, Beijing 100044, China

Abstract

The preparation of continuous hydroxyapatite film on stone is a promising method of protecting marble from erosion. However, many methods negatively affect the calcium in the substrate and forming of struvite on the dolomite surface, leading to a heterogeneous coating and low efficiency. In this study, a continuous hydroxyapatite coating on dolomitic marble was achieved from graphene enhanced Ca(OH)2 nanoparticles as the calcium precursor using the sol-gel method. The morphology and the structure of the film was evaluated by a field emission scanning electron microscope coupled with energy dispersive spectroscopy (FESEM-EDS), an optical microscope, Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and analytical techniques. Moreover, the color and the contact angle measurements, as well as the simulated acid rain test and freeze–thaw treatment, were performed to assess the chromatic aberration, hydrophilicity, reliability, and durability of the coating. A suppositional combination model among hydroxyapatite, graphene quantum dots, and dolomite were suggested based on structural similarities between the support material and components of the functional coating. The integrality and efficiency of the hydroxyapatite film was improved by compositing with graphene quantum dots.

Funder

Beijing Municipal Cultural Heritage Bureau

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3